

# Understanding Historic Change and Natural Processes to Inform Future Decision Making

Matt Hemsworth

Principal Geomorphologist

Steve Rose
Technical Director

## **Overview**



- Common problems and past mistakes
- What does this mean today?
- What can we do today?
  - Working with Natural Processes
  - Natural Flood Management
  - River Restoration
  - Flood Risk Management
  - Catchment Based Approach
  - Process Based Approach

## **Problems and mistakes from the past**











## **Problems and mistakes from the past**





Channel straightening

Total channel length today = 8km

Lost channel length = 5km

Flood risk impact
Fisheries impact
Biodiversity impact
Habitat impact
Geomorphology impact

## **Problems and mistakes from the past**







5km+ of more natural channel lost

Incision – sediment transport Lost floodplain connectivity Habitat loss

# What does it mean today?









## Scales of change



## What can we do today



#### Case study

- Small village with frequent flood history
- 'Traditional flood risk management scheme' investigated but ruled out:
  - Too costly
  - Change the look of the village
- Alternative solution?
  - Upper catchment Natural Flood Management measures
  - River and floodplain restoration
  - Added benefits habitat and biodiversity improvements
    - hydromorphology improvements
    - recreation and wellbeing opportunities







## What can we do today?



#### Case study

- Natural Flood Management only
  - Woodland planting (e.g. wider catchment, riparian, floodplain)
  - Leaky barriers
  - Runoff attenuation features
  - Soil structural improvements (arable and improved grassland)
  - In-field vegetative buffers strips
  - Offline temporary storage areas

## What can we do today?



- River and floodplain restoration
  - Floodplain reconnection
  - Restore floodplain paleo-features
  - Restore the channel course to a more sinuous nature
  - Riffles
  - Woody material in channel
  - Pools and Glides
  - Backwater areas
  - Bar creation
  - Buffer strips

Numerous benefits: Increased flood storage, improved biodiversity and habitat, better hydromorphology

## What can we do today?



- NFM and River Restoration together
  - Multiple distributed measures within catchment
  - Targeted individual measures and combinations of measures
  - E.g. leaky barriers encouraging flood water to spill into bunded floodplain storage areas (with controlled outlets)
  - Design informed by modelling outcomes to deliver downstream benefits to communities at risk
- Consideration of multiple benefits integral to design development
- Active stakeholder engagement and participation from outset

### **Benefits**



- Long term planning
- Understanding <u>short-term</u> and <u>long-term</u> benefits
  - Things take time to establish, stabilise, mature!
- Re-establish more natural processes within river & catchment systems
- Improved biodiversity
- Enhanced habitat connectivity
- Increased resilience to climate change impacts
- Provision of recreation and wellbeing opportunities

## **Common problems / hurdles**



- Incentives and funding
- Stakeholder engagement and participation
- Changes to land use / land management
- Confidence
  - Importance of monitoring effectiveness and performance
  - Sharing success big or small
  - What works
  - What doesn't work
- Management and maintenance responsibilities
- Statutory processes, planning & appraisal systems



## Thank you for listening

Matthew.Hemsworth@jbaconsulting.com