

# the River Restoration Centre

Working to restore and enhance our rivers

Delivering River Restoration: Recipes for Success

# 13<sup>TH</sup> ANNUAL NETWORK CONFERENCE





Restoring Europe's Rivers































**Delivering River Restoration: Recipes for Success** 

**River Restoration Center - 13th Annual Network Conference** 

Nottingham, April 20<sup>th</sup> 2012



# Pilot project « Walphy » : Walloon experimentation of river restoration



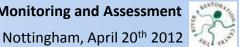


*Alexandre Peeters*<sup>a</sup>, Gisèle Verniers<sup>b</sup>, Bernard de le Court<sup>c</sup>, Éric Hallot<sup>a</sup> & François Petit<sup>a</sup>

Hydrology and Fluvial Geomorphology Research Center, University of Liège, Belgium










Biological

Morphological

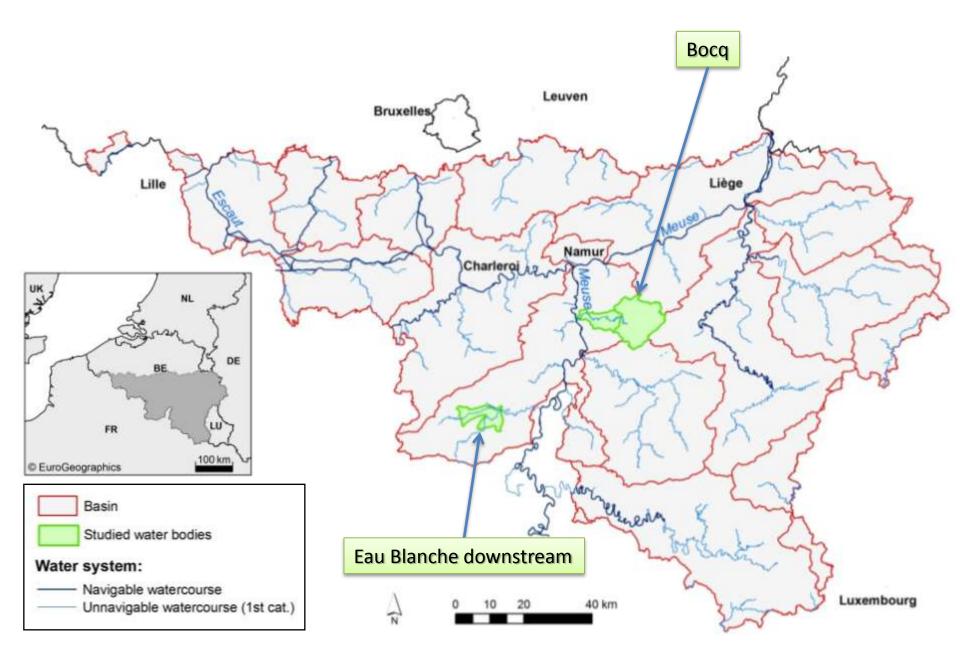




Chemica

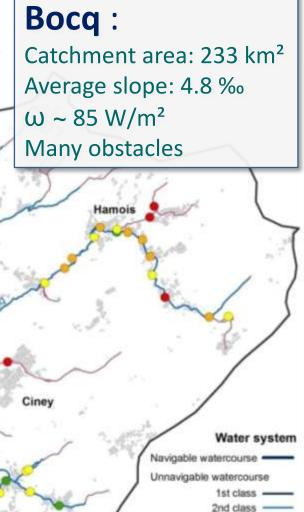
# I. Context & objectives of the project

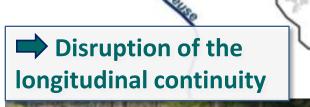
**Context**: Water Framework Directive (2000/60/CE): Water bodies are required to achieve the « good ecological status » by 2015 **Ecological status** 




Pilot project « Walphy » - Design of a decision tool for hydromorphological restoration of water bodies in Walloon Region (LIFE07 ENV/B/000038)

### **Objectives:**


- To develop a structured approach aiming at improving morphological quality of the upstream Meuse basin in order to achieve the "good ecological status" (WFD)
- To carry out experimental river restoration works on several risk water bodies
- Ecological and geomorphological monitoring of the restored river systems
- To develop a useful and suitable methodology to determine and schedule river restoration works in Wallonia














River restoration work



Minor Medium

Obstacle

**Major** 

Insurmountable

Source: SPW, 2007

3rd class

Urbanized are

Urbanized area

Source: SPW, 2007

Bypass channel

Undetermined

Rock ramp

0 - 10

111 - 120

131 - 140

141 - 150

151 - 160 161 - 170

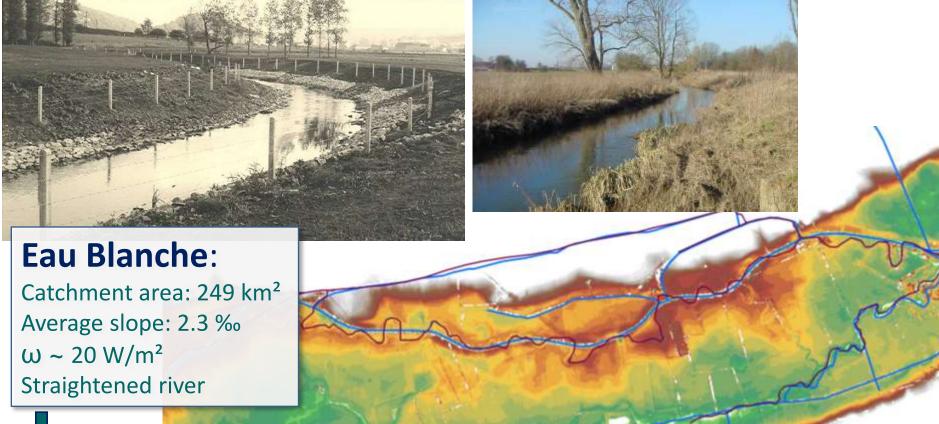
171 - 180

191 - 200



201 - 210 211 - 220

221 - 230


231 - 240

261 - 270

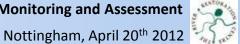
291 - 300

301 - 310

311 - 320



Poor stream-floodplain connectivity


MNT – LIDAR (LAser Detection And Ranging), 2001











# **Varied restoration techniques**

### Flow deflectors and gravel re-introduction

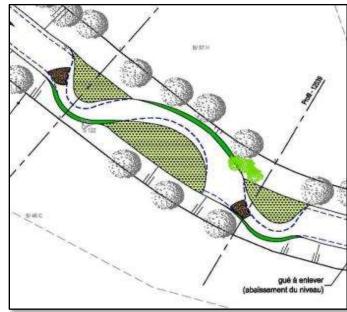


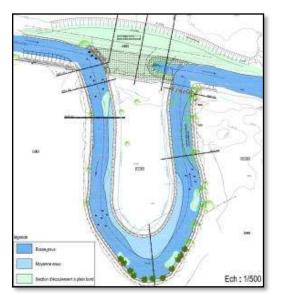








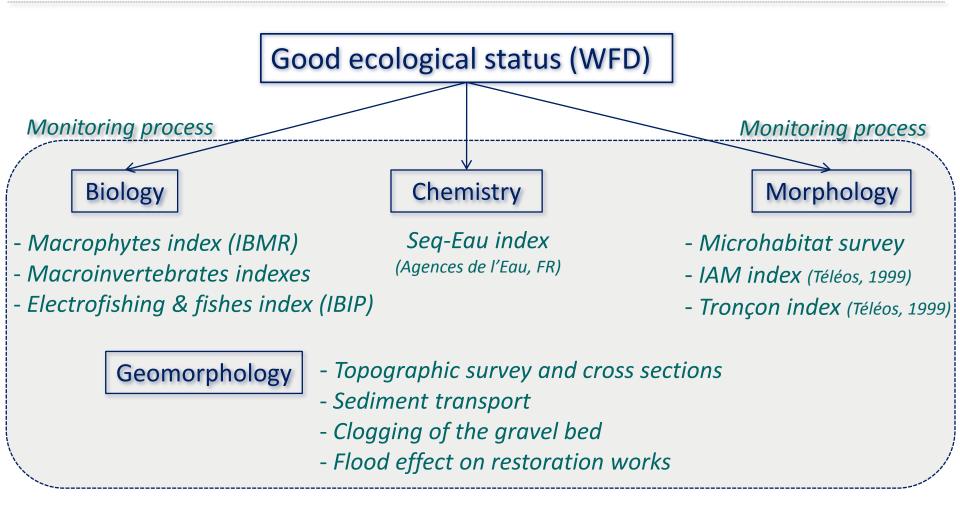



Low level berm














# III. Monitoring: data collection and analysis



**Aim**: assessing the success of restoration projects



# **Biology:**

### Macrophytes: IBMR index (Haury et al., 1998) based on:

- cover,
- ecological amplitude,
- trophic level of taxa.

### Feedback:

- For long-term monitoring
- Reflects the quality of water and substrates

### **Macroinvertebrates**: indexes based on:

- abundance,
- diversity,
- species richness,
- specific pollution sensitivity index,
- habitat quality,...

Multiple indexes



Optimized data analysis



### Electrofishing and IBIP index (Didier, 1997, Kestemont et al., 2001) based on:

- abundance,
- density,
- species richness,...



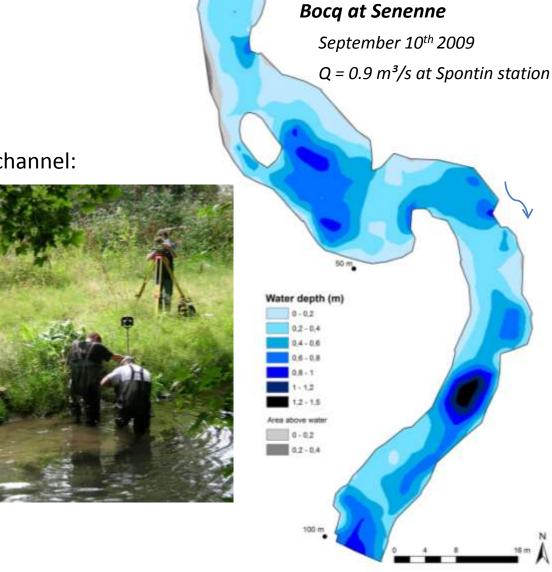




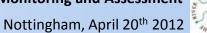
# Microhabitat mapping

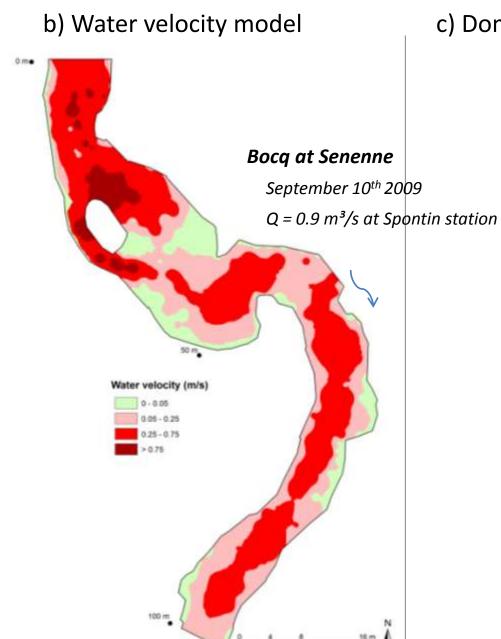
a) Water depth model

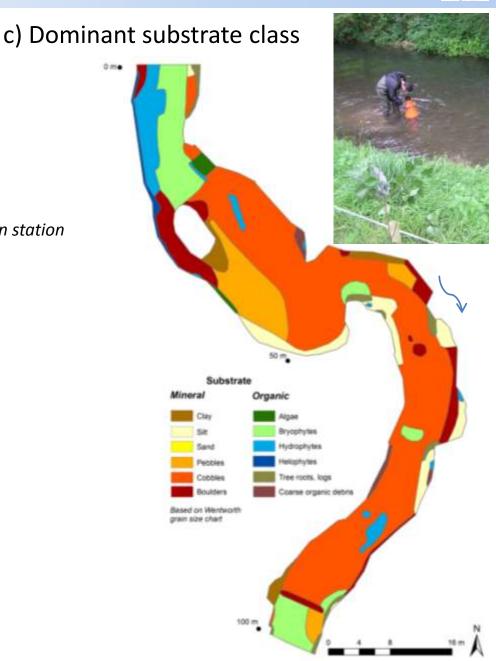
Field survey of the stream channel:


- Stream bed boundary
- Stream bed elevation
- Water surface elevation




- Stream bed DEM
- Water surface DEM





Water depth model





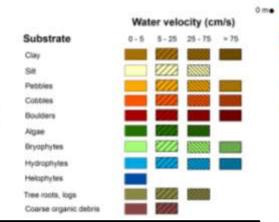






**Bocq at Senenne** 

September 10th 2009


 $Q = 0.9 \text{ m}^3/\text{s}$  at Spontin station



### Monitoring: data collection and analysis

# Morphology:

# Microhabitat mapping



|           |                       |            | WATER VELOCITY  |                  |             |      |  |  |
|-----------|-----------------------|------------|-----------------|------------------|-------------|------|--|--|
|           | Area (%)              | v < 5 cm/s | 5 < v < 25 cm/s | 25 < v < 75 cm/s | v > 75 cm/s |      |  |  |
| SUBSTRATE | Clay                  | 1.2        | 0.9             | 0.3              | 0.1         | 2.5  |  |  |
|           | Silt                  | 3.5        | 2.1             | 0.3              |             | 5.9  |  |  |
|           | Pebbles               | 1.9        | 4.9             | 2.0              | 0.2         | 8.9  |  |  |
|           | Cobbles               | 3.3        | 19.9            | 28.2             | 1.2         | 52.5 |  |  |
|           | Boulders              | 0.6        | 2.2             | 3.6              | 1.5         | 7.8  |  |  |
|           | Algae                 | 0.2        | 0.1             | 0.6              |             | 0.9  |  |  |
|           | Bryophytes            | 0.2        | 2.8             | 7.3              | 1.7         | 12.0 |  |  |
|           | Hydrophytes           | 0.2        | 1.0             | 4.6              | 0.3         | 6.1  |  |  |
|           | Helophytes            | 1.0        |                 |                  |             | 1.0  |  |  |
|           | Tree roots, logs      | 0.4        | 1.0             | 0.2              |             | 1.6  |  |  |
|           | Coarse organic debris | 0.5        | 0.4             |                  |             | 0.9  |  |  |
|           |                       | 12.8       | 35.3            | 47.1             | 4.9         |      |  |  |

### Feedback:

- Good accuracy of the mapping
- Time consuming (field survey)
- Influence by the season (vegetation growth)
- \_- Influence by the discharge (water velocity and depth)

Taken into account when monitoring (before and after restoration work)

# Morphology:

## Morphodynamic attractivity index (IAM) (Teleos, 1999)

$$IAM_{calculated} = \left(\sum_{1}^{n} (Si*Attract.(subs.)) *Var(subs.)*Var(he)*Var(v)\right)$$

Si = Area of the i substrate

**Attract**. = attractivity of the i substrate for the fish

**n** = Number of substrate

*Var(subs.)* = Number of substrate

**Var(he)** = Number of depth class

*Var(v)* = Number of water velocity class

"IAM calculated" compared to "IAM reference"

- Easily calculated from the microhabitat mapping
- Same remarks as for the microhabitats
- Provides fish habitat predictions
- Index with a fish orientation
- Useful for monitoring

| Substrate                      | Attractivity |
|--------------------------------|--------------|
| Root wads, woody coarse debris | 100          |
| Undercut banks                 | 90           |
| Hydrophytes                    | 80           |
| Boulders (with fish caches)    | 60           |
| Cobbles                        | 50           |
| Helophytes                     | 40           |
| Root mats                      | 40           |
| Boulders (without fish caches) | 30           |
| Mix of pebbles and cobbles     | 25           |
| Pebbles                        | 20           |
| Organic debris                 | 10           |
| Sands                          | 8            |
| Clay and silt                  | 4            |
| Mud                            | 3            |
| Concrete surface and slab      | 1            |
| Affluents, spring              | +25%         |

# Morphology:

### Tronçon index (Teleos, 1999)

#### Heterogeneity

Sinuosity, diversity of width, depth, flow, substrate, presence of backwaters,...

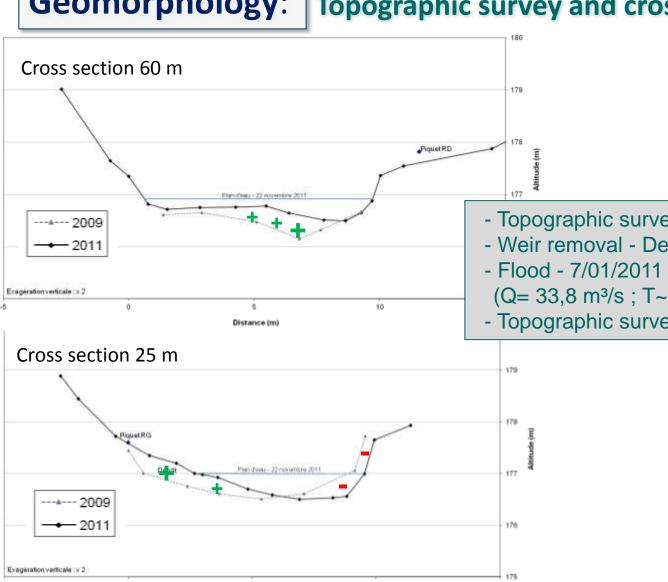
#### **Attractivity**

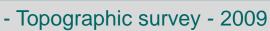
Spawning ground, hiding places, presence of backwaters,...

#### Connectivity

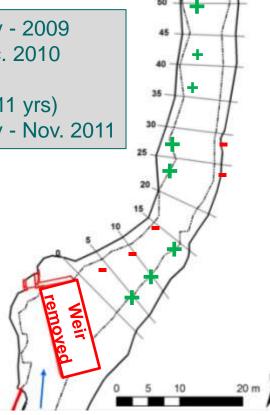
Obstacles, banks, riparian areas,...

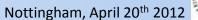
|              | Heterogeneity<br>(H) |                    | Att | ractivity<br>(A) | Co          | onnectivity<br>(C) | Stabilit<br>(S)       | Stability<br>(S) |                                      | PHYSICAL QUALITY |  |
|--------------|----------------------|--------------------|-----|------------------|-------------|--------------------|-----------------------|------------------|--------------------------------------|------------------|--|
| score of 111 |                      | of 111 score of 90 |     | S                | core of 130 | score from -60     | score from -60 to +40 |                  | = (H + A) x C x K<br>Score of 30 600 |                  |  |
|              | Α                    | ≥ 50               | Α   | ≥ 45             | Α           | ≥ 65               | Sedimentation         | > +10            | Α                                    | ≥ 6 500          |  |
|              | В                    | 40 - 49            | В   | 34 - 44          | В           | 49 - 64            | Balance               | -10 / +10        | В                                    | 3 500 - 6 500    |  |
|              | С                    | 28 - 39            | С   | 23 - 33          | С           | 33 - 48            | Erosion               | -25 / -10        | С                                    | 1 500 - 3 500    |  |
|              | D                    | 14 - 27            | D   | 11 - 22          | D           | 16 - 32            | Strong erosion        | -60 / -25        | D                                    | 400 - 1 500      |  |
|              | Е                    | ≤ 13               | Ш   | ≤ 10             | Е           | ≤ 15               | Gives a K coefficient |                  | Е                                    | < 400            |  |





| К             | -60 < S < -26 | -25 < S < -11 | -10 < S < 9 | 10 < S < 40 |  |
|---------------|---------------|---------------|-------------|-------------|--|
| <i>H</i> ≥ 50 | K = 0.85      | K = 1         | K = 1.25    | K = 0.75    |  |
| H < 50        | K = 0.85      | K = 1         | K = 0.85    | K = 0.75    |  |

- Uneasy-to-use codage file
- Semiquantitative method
- Index with a fish orientation
- Useful subindexes to define problems (pre project) and for monitoring


## Monitoring: data collection and analysis


# Geomorphology: Topographic survey and cross sections ...





- Weir removal Dec. 2010
- $(Q= 33.8 \text{ m}^3/\text{s} ; T~ 11 \text{ yrs})$
- Topographic survey Nov. 2011



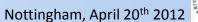




# **Geomorphology:**

# **Sediment transport**

Evaluating bedload mobility using traced pebbles and PIT-tags


### **PIT tagged pebbles** placed in rivers at:

- reference reaches
- reaches impacted by obstacle (e.g. upstream of weir)
  - = enable to highlight restoration of free movement of sediment
- reaches with spawning gravel reintroduction
- → enable to characterize the mobility of new spawning gravel

- Allows particles with b-axis of 20 mm to be traced
- Do not contain a battery
- Great recuperation rate (more than 80%)
- -Requires expensive equipment
- -Provide useful information (bedload movement discharge, distances travelled, granulometric indexes)









## Clogging of the gravel bed

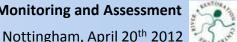
### **Sediment traps** buried into the gravel bed on:

- reference reaches
- reaches impacted by restoration work
- reaches with gravel reintroduction

#### Feedback:

- Susceptible to loss (flood, scour,...)
- Cannot be used in water deeper than 0.8m
- Time-consuming (laboratory analysis)
- Installation does not provide natural conditions (breaking of the armour layer)
- → Suitable to evaluate short period of work

### **Wooden stakes** inserted into the gravel bed on:


- reference reaches
- reaches with gravel reintroduction

- Qualitative method
- Simple technique to implement










# **Geomorphology:**

## Flood effect on restoration works

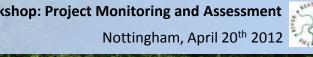
Restoration works and their stability and resistance to erosion: related to flood characteristics (discharge, recurrence, specific stream power, shear stress)







Slope of the water surface


Geometrical characteristics of the wetted cross-section

Discharge



- Specific stream power
- Shear stress







Petiau - Olivier Desteucq - Pierre Joye

**ULg / LHGF : Alexandre Peeters – Eric Hallot – François Petit** 

FUNDP / URBE : Gisèle Verniers - Jean-Pierre Descy