

River Restoration Centre

De-culverting strategy for the North of England

Selection and Assessment of Potential Projects

Aims and Objectives

To develop a method for identifying and prioritising culverts for removal

To develop a tool to evaluate important criteria and then ranks

Proiect Approach

Develop methodology

Collate Data

Consult Environment Agency, Local **Authorities and Water Companies**

Initial Data filter to remove bridge and building culverts

Develop Matrix (in consultation with Environment Agency staff

Rank matrix

Desk top assessment of top 300 culverts

Consult Environment Agency Area staff on knowledge of individual culverts

Site Visits to assess potential, constraints etc

Criteria for assessment

- Connectivity how much channel is being connected by removing the culvert?
- Length of culvert longer culverts are more of a barrier to fish movement
- River size (shreve) larger river potentially have more habitat diversity
- Culvert status better to remove a failing culvert
- Flooding/blockage risks removal and replacement with an appropriate sized channel may reduce flood risk
- Future maintenance any future additional maintenance as a result of culvert removal needs to be considered
- **Upstream catchment length** connectivity to headwater spawning grounds would be advantageous Current bio-chemical status (WFD) - opening culverts in
- watercourses of poor quality gives a greater opportunity to improve water quality • Number of culverts upstream and downstream - the greater
- the number of barriers there are upstream and downstream the less fish passage improvement there will be
- **Recommended to be de-culverted** those culverts recommended for removal by the Environment Agency or Local Authorities have been given higher status

Outputs

Filtered dataset with bridge and building culverts removed

Matrix with ranked culverts and the option to add further information as and when it becomes available and rerank the data

Site visit in depth assessments and 2500 geo-referenced photographs

A methodology for prioritising culvert removal that could be more widely applied e.g.to weirs

Extract from proforma used on site visit assessment

		De-cu Unit descriptio	_		Form – Secti and landuse		eristics ¹					
NOTE: An assessment needs to be complete location of each unit must be n			according to	geomorpholog	pical features, c	hanges in s	riparian lan	iduse, vegetation d	Ř flood	lplain charac	teristics. The	
Date:		Surv	veyor:] [Jpstream 1	NGI	R:		
Downstream NGR:	River Name:					Weather conditions:						
nit description												
Reach Characteristics Code: LB - Left Bank; RB-Right Bank; C	1 - Clay, H-High;	M-Medium; L-Low;	NF-No perc	eivable Flow;	Y-Yes; N-No							
Bankful width (m)	cful width (m) Bankfu			oth Bank slo				ope range LB R				
Av. riffle water dep (m)	Av. riffle water depth (m) Av. pool water depth (m)					Av. water depth (m) - no pool/riffle sequence						
Bank Material (LB) others:	– D= don	ninant, tick	Co	bble [Grave	1	C1	Sand		Silt	Artifi	
Bank Material (RB) – D= dominant, tick others:			Co	bble	Grave	:1	C1	Sand		Silt	Artific	
Bed Material— 'D'= dominant, tick others:			Co	bble	Grave	1	C1	Sand		Silt	Artific	
If there is any artifi	cial bank	or bed mater	ial plea	ise state	the % ar	nd pro	ovide 1	brief detai	ils:			
% LB	% RB	% Bed	De	tails:								
	_			/ -: 60					_			
Has it got any geomorphological feat	ures? Please not	e, and estimate spaci	ng tot boot	ume sedne	ence.							
Has it got any geomorphological feat Sinuosity (H/M/I		te, and estimate spacii Bars (Y/N)		/ nme seque	Bed va	riatio	n (Y/N	1) [W	/idtl	ı variat	ion (Y/I	

Issues to be

Detailed River Network

- Misconnection of parts of the river network
- River networks connected across catchments
- Incorrect labelling of culverts which were in fact sewage outfalls, swallow holes, paths, open channels or mine adits

Amount of processing

over 41,000 culverts (>50m in length) on the DRN network

Incomplete or inaccurate information in the asset databases

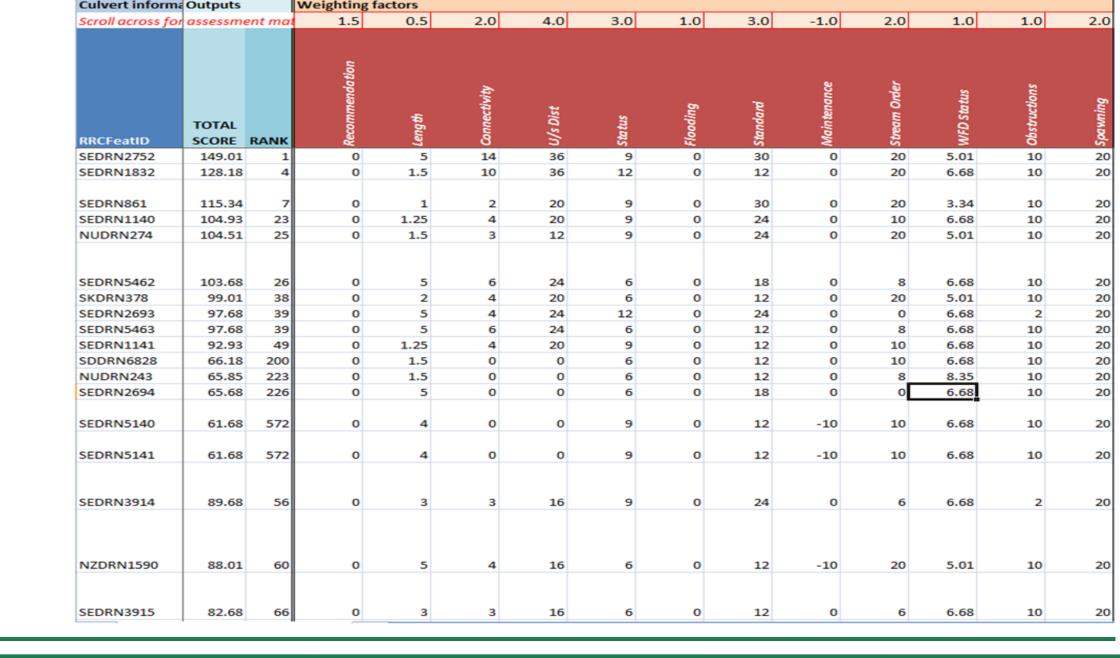
Course of culvert unknown or incorrect

Required data not recorded as standard

No heights on weirs

Benefits of de-culverting

The benefits fall into three main categories: **Environmental**


- Improve fish passage
- Increase habitat
- Improve morphology
- Improve biodiversity
- Improve water quality
- Reduce habitat fragmentation **Maintenance/Operational**

- Reduce maintenance costs
- Easier to trace pollutants in open channels Reduce flood risk from blockages or collapse
- Decrease health and safety risks
- Decrease operational risk of flood events

Socio-economic

- Improve aesthetic appearance
- Improve amenity
- Improve social environment
- Potential economic benefits for householders
- Potential increased revenue for local businesses Engagement of local residents and stakeholders
- Opportunities for partnership working

The multi criteria analysis Matrix

Environment Agency Project Manager: - Jim Walker jim.walker@environment-agency.gov.uk

Bullock Building, Cranfield Campus, Cranfield, Bedfordshire MK43 0AL

